x=<sup>64</sup>#8730;N
N е двадесетцифрено
x е цяло число
х=?
ЕДИТ:
#8730; -> знак за коренуване
х=корен 64-ти от N
x=<sup>64</sup>#8730;N
N е двадесетцифрено
x е цяло число
х=?
ЕДИТ:
#8730; -> знак за коренуване
х=корен 64-ти от N
x=2
N=18446744073709551616
2 е цяло число, на 18446744073709551616 цифрите са двадесет. Може да се провери с калкулатор.
Ако не се лъжа, това трябва да е единственото решение на задачата.
<blockquote id="quote"><font size="1" id="quote"><b id="quote">quote:</b id="quote"></font id="quote"><table border="0" id="quote"><tr id="quote"><td class="quote" id="quote"><font size="1" id="quote">x=2
N=18446744073709551616
2 е цяло число, на 18446744073709551616 цифрите са двадесет. Може да се провери с калкулатор.
Ако не се лъжа, това трябва да е единственото решение на задачата.
<div align="right">Originally posted by BerkStock - 02/11/2004 : 09:43:23</div id="right">
</td id="quote"></tr id="quote"></table id="quote"></blockquote id="quote"><font size="2" id="quote"></font id="quote">
Ще приема верен отговор, ако се докаже че решението е единствено и не се използва калкулатор с повече от 8 цифри
Х е цяло естествено число, N също. Щом N е 20-цифрено => N <=10^21-1<10^21. Да допуснем, че Х>3=>N=Х^64>3^64, но от друга страна N<10^21 , тоест 3^64<N<10^21 => 3^64<10^21 , но това не е вярно -
10^21=(3^2+1)^21<(3^3)^21=3^63, т.е. 10^21<3^63, което пък е < от 3^64, т.е. неравенството е невярно => допускането е невярно => Х<=2, но Х не е 1, тъй като и N ще е едно, а то е 20-цифрено => единствено решение е N=2^64 и Х=2
Разсъжденията на Krusteva са верни и доказват, че търсеното число е 2
Преди да предам щафетата искам да дам и моето решение, което е универсално за подобни задачи.
Логаритмува се уравнението, като логаритъма е с основа 10
log<sub>10</sub>x = (log<sub>10</sub>N)/64
10<sup>19</sup> <= N < 10<sup>19.99</sup> следователно
0.296 <= (log<sub>10</sub>N)/64 < 0.312 следователно
10<sup>0.296</sup> <= x < 10<sup>0.312</sup>
Единственото цяло число в този интервал е 2
ЕДИТ
@Krusteva Обявявай кога ще е следващата задача
Хвърлих едно око на правилата...ако правилно съм разбрала може и сега да я постна новата , ще я сложа в нова тема...
<font color="blue">Забележка:
Би било хубаво условието на задачата да бъде пълно и да няма допълнителни добавки в следващи постове, както дефакто се получава за тази задача.</font id="blue">
Иначе решението по дългия метод е наистина хубаво.
<blockquote id="quote"><font size="1" id="quote"><b id="quote">quote:</b id="quote"></font id="quote"><table border="0" id="quote"><tr id="quote"><td class="quote" id="quote"><font size="1" id="quote"><font color="blue">Забележка:
Би било хубаво условието на задачата да бъде пълно и да няма допълнителни добавки в следващи постове, както дефакто се получава за тази задача.</font id="blue">
Иначе решението по дългия метод е наистина хубаво.
<div align="right">Originally posted by BerkStock - 02/11/2004 : 16:30:22</div id="right">
</td id="quote"></tr id="quote"></table id="quote"></blockquote id="quote"><font size="2" id="quote"></font id="quote">
направих добавките в условието за да няма отговори като твоя, който според мен не е логически , а с налучкване.
Избираш число вдигаш го на 64-та степен и броиш цифрите, ако не стане пробваш със следващото и т.н.