Страница 2 от 2 ПърваПърва 12
Резултати от 16 до 24 от общо 24

LCD матрици /FAQ - мнения , обсъждане

Сподели във Facebook Сподели в Twitter Изпрати на Email Сподели в LinkedIn
  1. Senior Member Аватара на hristoslav2
    Тук е от
    Jun 2008
    Живее в
    Варна
    Мнения
    29,874
    #16

    Re:LCD матрици /FAQ - мнения , обсъждане

    ASV - Advanced Super View
    (ASV - Axially Symmetric Vertical Alignment )


    Разработена от Sharp AVC Liquid Crystal Display Group
    ASV се нарича още CPA. Разработени от Sharp.Това е матрица тип VA-vertcal aligment. LCD телевизорите използващи ASV панели дават 170 градуса зрителен конус с обхват на контраста по-голям от 10:1, времето за реакция достига 15ms.
    При включено захранване LCD молекулите се отклоняват във всички направления, като фейерверки, за обеспечаване на най-добрият ъгъл на обзор във всички плоскости. Цвета на екрана зависи по-малко от ъгъла на гледане. Изображението е ярко и цветисто.

    ASV
    --
    Черните вертикални линиики завършващи с точки, в средата на субпикселите са управляващите транзистори.
    6 домейна горе + 6 домейна долу = 1 субпиксел
    3 субпиксела /36 домейна/ = 1 пиксел


    Всеки субпиксел, се състои от субпиксел зона А , и субпиксел зона B
    Този пост е редактиран от hristoslav2; 04-05-14 в 14:42.

  2.  
  3. Senior Member Аватара на hristoslav2
    Тук е от
    Jun 2008
    Живее в
    Варна
    Мнения
    29,874
    #17

    Re:LCD матрици /FAQ - мнения , обсъждане

    UV²A UltraViolet induced multi-domain Vertical Alignment / UV-MVA LCD
    UV²A се ражда по идея на Mr. Miyadi Hirokazu (Sharp AVC Liquid Crystal Division, Advanced Technology Development Center, Development Office IV - Tenri, canons)

    Поделението за LCD панели на Sharp се нарича - AVC Liquid Crystal Display Group
    http://sharp-world.com/products/devi...log/index.html
    http://www.sharpsme.com/Page.aspx/eu...8a75a062/LCDs/
    http://www.sharp.net.au/cms/articles...0LINE%20UP.pdf
    http://www.непозволен адрес!/file/1ca58x
    http://www.sharpmeg.com/Page.aspx/am...216/TV_Panels/


    Sharp от 2002 до 2010 година произвеждаше ASV (Advanced Super View) която е тип MVA,
    http://www.avforums.com/forums/attac...asv-sharp-.jpg
    Черните вертикални линии завършващи с точки в средата на субпикселите са управляващите транзистори.
    6 домейна горе + 6 домейна долу = 1 субпиксел
    3 субпиксела /36 домейна/ = 1 пиксел


    От 2009 година насам произвежда UV2A(Ultraviolet-induced Multi-domain Vertical Alignment) - това е маркетингово название като първото, а матрицата е тип VA Optical Alignment
    http://www.sharpmicro.com/Page.aspx/...a-11a7891d9b14
    и от 2010 година UV2A Quatron


    UV²A се ражда по идея на Mr. Miyadi Hirokazu (Sharp AVC Liquid Crystal Division, Advanced Technology Development Center, Development Office IV - Tenri, canons)
    Тип - Polymer sustained alignment (PSA)
    http://electroiq.com/blog/2009/01/lcd-manufacturing-…duce-panel-costs/


    Произвежда се в два варианта:

    RGB -/red, green, blue/_______________________RGBY -/red, green, blue, yelow/ - Quatron


    UV²A - RGB
    http://ad.impress.co.jp/special/aquos1003/
    http://www.sharp.eu/cps/rde/xchg/eu/...technology.htm
    http://www.avforums.com/forums/attac...0e_x-gen_1.jpg
    Дебелите хоризонтални черни линии са шини/електроди. Черните ромбове в средата на субпикселите са управляващите транзистори. Тънките черни зигзагообразни линиики са управляващите домейните електроди.
    4 домейна горе + 4 домейна долу = 1 субпиксел
    3 субпиксела /24 домейна/ = 1 пиксел


    UV²A - RGBY Quatron
    Добавен жълт пиксел. А защо жълто - просто защото човешкото око е по-чувствително към ниския спектър - червено, жълто, зелено. Като се разширят възможностите на възпроизвеждане в тоя спектър, резултата е "по-жива" картина...Единственият плюс е е, че така се компенсира яркостта на жълтотои се разширява спектъра в жълто, оранжево,кафявата област.
    Изборът е спрян на жълто, а не на cian, magenta или white, защото така дава най-добрата комбинация на цветовият обхват и също така нараства яркоста.
    http://www.avforums.com/forums/attac...-46820ev_1.jpg


    При UV²A Quatron матриците, всеки пиксел се състои от 4 субпиксела, като всеки отделен субпиксел се управлява от един транзистор.
    Всеки субпиксел се състои от две части, зона A(горе) и зона B(долу)
    Всяка зона се състои от 4 домейна.
    1 пиксел -> 4 субпиксела -> 32 домейна
    1 субпиксел (2 зони) -> 8 домейна(4 домейна горе + 4 домейна долу)


    Отличителни особенности в структурата на пиксела в матрици- Axially Symmetric Vertical-alignment (ASV) и X-Gen
    http://img-fotki.yandex.ru/get/4004/...c502d102_L.jpg
    http://img-fotki.yandex.ru/get/3804/...2188a354_L.jpg
    Така изглежда пикселната структура на матриците X-Gen
    http://img-fotki.yandex.ru/get/3708/...4951f322_L.jpg


    Най-новата матрица SHARP UV2A (Ultraviolet-induced Multi-domain Vertical Alignment)
    UV²A се ражда по идея на Mr. Miyadi Hirokazu (Sharp AVC Liquid Crystal Division, Advanced Technology Development Center, Development Office IV - Tenri, canons)


    https://www.youtube.com/watch?v=RotGaNucvMI#ws


    http://www.sharpusa.com/ForHome/HomeEntertainment/LCDTVs/WhatIsQuattron.aspx


    В Quatron e добавен 4-ти жълт субпиксел. А защо жълто - за разширяване на цветовото пространство, както и защото човешкото око е по-чувствително към ниския спектър - червено, жълто, зелено. Като се разширят възможностите на възпроизвеждане в тоя спектър, резултата е "по-жива" картина.


    Матриците на Sharp - pdf
    http://www.sharp-world.com/products/device/catalog/
    http://www.sharpsme.com/Page.aspx/eu...roduct_Groups/
    Този пост е редактиран от hristoslav2; 04-05-14 в 14:40.

  4. Senior Member Аватара на hristoslav2
    Тук е от
    Jun 2008
    Живее в
    Варна
    Мнения
    29,874
    #18

    Re:LCD матрици /FAQ - мнения , обсъждане

    MVA: (Multi-Domain Vertical Alignment или Многоадресово Вертикално Разположение)

    наследника на предишните VA технологии.
    http://www.meko.co.uk/multivertalign.shtml

    Принцип на работа на MVA
    http://www.personal.kent.edu/~mgu/pictures/mva.jpg

    Изменение на образа по хоризонтала на MVA панелите


    сравнение на пикселната конфигурация м/у оригиналната MVA и подобрената версия
    http://www.personal.kent.edu/~mgu/pictures/mva-3.jpg

    Има няколко генерации технологии базирани на MVA, включително произвежданите от AU Optronics- P-MVA и A-MVA, както и добре познатата на Chi Mei Optoelectronics- S-MVA. За момента MVA са най масово произвежданите матрици.
    Третата технология e разработена през 1998 от Fujitsu като компромис както в ценово, така и в техническо отношение между TN и IPS и е обещаваща от гледна точка на преодоляването(нещата изглеждат така поне от теоретична гледна точка) на основните недостатъци на LCD панелите. В общи линии нейните предимства се съсредоточават в това че тя е способна да подобри ъгъла на видимост (втори след S-IPS технологията), добро дълбоко черно, добра цветна репродукция и дълбочина , и бързо време на реакция на пикселите чрез използването на RTC технологии. Тя осъществява тези си предимства, поради факта, че притежава всички цветови елементи върху панела, като те са разделени на клетки и зони. Те се формират по надигнатите части на вътрешната структура на филтрите. Целта на този дизайн е да може течните кристали да се движат в посока, противоположна на съседните си течни кристали. Това също така позволява на наблюдателя да вижда същата степен на засенченост и качество на цвета, независимо от ъгъла на гледане.
    Всеки пиксел е разделен на четири части, така наречените домейни, кристаллите в в които се завъртат под различни ъгли. Без да изпадам в подробности ще кажа само, че това е необходимо за осигуряване на добър зрителен ъгъл: светимоста на всеки отделен домейн силно зависи от ъгъла на гледане, но четириразлично ориентирани домейна в средно дават една и съща яркост независимо от това, дали гледате отгоре,отстрани или отдолу.
    Един от незначителните проблеми в MVA-матриците се являва наличието на тъмна полоса, расположенна на пиксела в местото на «стиковка» на съседните домейни — тя намалява общата прозрачност на пиксела, а това означава, снижаване на КПД LCD-панелa, който и така е слаб, нещо от порядъka на 4 % (то ест, ако целият панел показва чист бял цвят, това значи, че през него преминава само 4 % излъчваната от лампите на подсветката светлина).Има няколко типа MVA:
    * MVA — Multi-domain Vertical Alignment. Първият широко распространил се тип матрица из това семейство
    * PVA( Patterned Vertical Alignment) - развитие на *VA технологията, предложено от Samsung, характеризиращо се на първо място с увеличена контрастност на изображението.
    * S - PVA (Super- PVA) от Samsung,
    * S - MVA (Super MVA) от Chi Mei Innolux,
    * P-MVA, A-MVA (Advanced MVA) от AU Optronics. по нататъшно развитие на *VA технологии от различни производители.


    http://www.digitalversus.com/tv-tele...ose-a1547.html
    http://www.lesnumeriques.com/tv-tele...els-a1547.html
    Този пост е редактиран от hristoslav2; 04-05-14 в 14:35.

  5. Senior Member Аватара на hristoslav2
    Тук е от
    Jun 2008
    Живее в
    Варна
    Мнения
    29,874
    #19

    Re:LCD матрици /FAQ - мнения , обсъждане

    A-MVA (Advanced MVA)

    http://www.ctsp.gov.tw/files/313ebc2...bbdf0e00a1.pdf
    A-MVA - cоnтrаsт 1500:1
    A-MVA2 - cоnтrаsт 2500:1
    A-MVA3 - cоnтrаsт 4000:1
    A-MVA3(HC pol+MLF) - cоnтrаsт 5000:1
    http://auo.com/auoDEV/?ls=en

    Прикачен файл 13642
    http://forum.ixbt.com/post.cgi?id=attach:62:11088:734:1

    http://informationdisplay.org/IDArch...nerTFTLCD.aspx

    http://www.ctsp.gov.tw/files/313ebc2...bbdf0e00a1.pdf
    PMVA=4 domain VA
    AMVA=8 domain VA
    AMVA2=improved CR
    AMVA3=polymer-stabilized vertically alignment (PSA) technology for transmittance improvement
    AMVA5=further CR&transmittance improvement with storage capacitor modification and CF material optimization.
    Подобренията се свеждат основно в намалено време за реакция по пътя на манипулации с подаването на по-високо напрежение в началният стадии та измененията в ориентацията на кристалите в субпиксела (тази технология в различни источници се нарича или «Overdrive» или «Компенсация времето за реакция») и окончателният преход към пълноцени 8-бита, кодиращи цвета във всеки канал.

    Има различни версии на AMVA3 пиксели които могат да изглеждат точно като версия 5. Но много от версиите използват нова технология наречена polymer sustained alignment.
    Този пост е редактиран от hristoslav2; 04-05-14 в 14:34.

  6. Senior Member Аватара на hristoslav2
    Тук е от
    Jun 2008
    Живее в
    Варна
    Мнения
    29,874
    #20

    Отговор: LCD матрици /FAQ - мнения , обсъждане

    PVA: Patterned-ITO Vertical Alignment
    Samsung PVA

    Типичен Samsung панел. Използват се решения, близки до MVA, като разликата е в незначителни технически особености. Принципът на действие на PVA се състои в подреждането на молекулите на течния кристал под прав ъгъл спрямо управляващите електроди и формиране на изображението за сметка на малкото им отклонение от указаното положение. Това позволява постигането на висок ъгъл на видимост (до 170 градуса), ниво на контраста 2500:1 и подобрено цветопредаване.
    Страда от същите недостатъци като тези на MVA, но за смекта на това пък се отличава с много добър контраст при визуализация на изображенията.
    PVA и S-PVA (super patterned vertical alignment) са алтернативни версии на MVA технологията. Разработени отделно и независимо , те предлагат просто особенност на MVA, но със по-висок обхват на контраста стигащ до 5000:1. По евтините PVA панели предлагат използване на dithering и FRC, PVA и S-PVA предлагат добро и дълбоко черно и широк зрителен ъгъл . S-PVA също така предлагат по-малко време на реакция на пикселите използвайки модерни CRT технологии.

    http://www.personal.kent.edu/~mgu/LCD/pva.htm

    Прицип на работа на PVA
    http://www.personal.kent.edu/~mgu/pictures/pva.jpg

    [img width=800 height=600]http://forum.ixbt.com/post.cgi?id=attach:62:11088:198:3[/img]

    подобни на MVA. Някои PVA са 6-битови, макар че е известно че са 8-битови.Имат по-добра цветова репродукция и зрителен ъгъл от TN, по-бавни са от TN и S-IPS, най-добрият контраст, възможни оплаквания от color shifting или input lag. Имат по-високи възможности от S-IPS




    C-PVA (Circularly Polarized Vertical Alignment) - с кръгова поляризация/вместо линейна/
    http://www.cdr.ust.hk/publications/r...06/SID39_2.pdf
    http://jjap.ipap.jp/link?JJAP/41/L1383

    http://www.xbitlabs.com/articles/mon...0-f2380_2.html
    http://www.xbitlabs.com/images/monit...-f2380/p6s.png
    http://www.ncbi.nlm.nih.gov/pubmed/19957357
    http://hardforum.com/showthread.php?t=1430306


    http://www.codinghorror.com/blog/200...ted-equal.html




    S-PVA (Super Patterned Indium Tin Oxide Vertical Alignment)
    Samsung (y.2010 - new type S-PVA)

    Samsung (y.2010 - new type S-PVA)

    Представлява подобрение на PVA технологията. S-PVA са вече истински 10-битови и са с по-висок контраст от PVA. S-PVA-имат две зони, във всяка от които има по четири домейна-общо осем домейна на субпиксел. Ъглите на обзора са несимметрични, промяната на гамата при поглед от едната страна е по-голям,от другата.



    _________________________________________________

    Светлината от ламповата подсветка, преминава през "сандвича" от елементи на матрицата, попада на RGB-цветен филтър и, в спокойно състоянието на течните кристали (еднородна бяла заливка), излъчват и трите цвята - червен, зелен и син. Ако на екрана се изобразява по-тъмен отенък на сивия цвят - субпикселите потъмняват и нямат ясни цветове. Видимата част на всеки от тези цветове се нарича субпиксел, а всичките три заедно образуват пиксела (цветната точка). Всички останали цветове на екрана се получават в резултат на различни комбинации от именно тези три цвята.

    При S-PVA матриците имаме по два сегмента на субпиксел. Сътветно 1-ви в централната част и 2-ри в двата края на субпиксела.


    Така двата сегмента могат да имат различна яркост.По този начин се регулират нивата на цветовете - техните нюанси.




    Screen Technology and Sub-Pixels Up Close
    Този пост е редактиран от hristoslav2; 04-05-14 в 21:22.

  7.  
  8. Junior Member
    Тук е от
    Jan 2008
    Мнения
    63
    #21

    Отговор: LCD матрици /FAQ - мнения , обсъждане

    PSA(polymer sustained alignment) aligns liquid crystals without protrusion and without ITO main slit. This enables higher transmittance(aperture ratio) and eliminates the light leak from protrusions(по-добро черно).
    PSA (Polymer sustained alignment ), like UV2A is a method of in cell liquid crystals pre-alignment. This method achieves proper liquid crystal pre-tilt angles without rubbing, protrusions, or patterned common electrodes.
    It can be applied in all types of VA matrices - MVA, PVA etc.

    LCD manufacturing technologies target increasing transmission to reduce panel costs - ElectroIQ
    PSA LCD panel - AU Optronics Corp.
    PSA LCD PANEL WITH PIXEL UNIT OF EIGHT DOMAINS - US Patent Application 20120105756 Claims
    http://electroiq.com/blog/2009/01/lc...e-panel-costs/
    Role of Surface Hydrophobicity in Pretilt Angle Control of Polymer-Stabilized Liquid Crystal Alignment Systems - The Journal of Physical Chemistry C (ACS Publications)
    EMD Chemicals Performance Materials - PS-VA – LCD technology | EMD Chemicals
    P‐143: Polymer Stabilized In‐Plane Field Driven Vertical Alignment Liquid Crystal Device | ReadCube Articles

    Прикачен файл 13643

    http://www.avforums.com/forums/attac...aced-modes.png

    http://www.avforums.com/forums/attac...ced-modes2.png

    Super PLS (plane to line switching)
    http://www.flatpanelshd.com/focus.ph...&id=1291980086
    Този пост е редактиран от hristoslav2; 04-05-14 в 14:35.

  9. Senior Member
    Тук е от
    Jan 2007
    Мнения
    2,240
    #22

    Отговор: LCD матрици /FAQ - мнения , обсъждане

    http://en.wikipedia.org/wiki/Pixel
    http://www.tftcentral.co.uk/articles...es_content.htm
    http://www.pchardwarehelp.com/guides...anel-types.php

    1971: First TN LCD screen
    1984: First colour LCD screen by Thomson
    1985: First LCD for IT products by Matsushita (which later became Panasonic)
    1996: IPS: Invented by Hitachi
    1996: VA: Invented by Fujitsu
    1998: S-IPS: Invented by Hitachi, Adopted by LG and Philips (IPS Family)
    1998: MVA: Invented by Fujitsu, Adopted by AU Optronics (P-MVA and A-MVA) and CMO (S-MVA)
    2000 (or earlier): PVA: Samsung (VA Family)
    2002: ASV: Sharp (VA Family)
    2002: AS-IPS: Hitachi (IPS Family)
    2004: S-PVA: Samsung (VA Family)
    2004: PSA: (Polymer sustained alignment) - нов метод пре-ориентация молекулите, Created by Fujitsu, Adopted by Samsung, AU Optronics (VA Family) Методът на пропускане на светлината през кристалите остава същият като в - S-PVA, A-MVA ASV...
    2004: IPS-Pro (IPS-Provectus, IPS-Alpha, Fringing Filed Switch, H-IPS): Created by Hitachi, Adopted by Panasonic (IPS Family)
    2005: A-MVA, P-MVA, S-MVA
    2006: H-IPS: LG/Philips
    2009: eIPS: LG (IPS Family)
    2009: C-PVA: Samsung (VA Family)
    2009: UV²A: Sharp, CMO (VA Family)
    2009: AMOLED: Samsung (OLED Family)
    2010: Four-Colour UV²A: Sharp (VA Family)
    2010: Super AMOLED Plus (Active-Matrix Organic Light-Emitting Diode): Samsung (OLED Family)
    2011: PLS: Samsung (IPS Family)

    http://www.digitalversus.com/tv-tele...ose-a1547.html

    C-PVA матриците са 10% по-скъпи от TN и се поставят в монитори и телевизори до 27"

    TN film (Twisted Nematic)
    ниска себестойност на производство
    ограничена видимост от различни ъгли
    бързо време за реакция на пикселите
    мъртвите пиксели светят бял цвят
    ниските нива на контраста не са толкова тъмни от колкото на VA технологията
    ниска цветна продуктивност

    a-si TFT/amorphous silicon (a-Si) - това е TN матрица
    биват още и silicon oxide, silicon oxynitride (SiON), silicon nitride,
    http://www.hpl.hp.com/techreports/96/HPL-96-19.pdf

    _________________________________________________
    IPS (In Plane Switching)
    подобрена видимост от различни ъгли от TN
    много добра цветна възпроизводителност
    по - бавно време за реакция от TN
    мъртвите пиксели светят черно
    ниските нива на контраста не са толкова тъмни от колкото на VA технологията

    H-IPS /Horizontal-IPS/ -
    e-IPS /economic-IPS/ е подкатегория на H-IPS, с по-малки зрителни ъгли от S-IPS
    UH-IPS /Ultra Horizontal-IPS/ - 18% по-голяма пропускливост от e-IPS

    _________________________________________________
    Super-IPS (S-IPS)
    същата като IPS, но с малко различия
    най-доброто цветно възпроизвеждане от всички TFT технологии
    по - ниска себестойност за производство от IPS
    подобрено време за реакция

    E-IPS /Enhanced IPS/ -


    _________________________________________________
    MVA (Multidomain Vertical Alignment) http://de.wikipedia.org/wiki/Multi-d...ical_Alignment
    компромис между TN и IPS технологиите
    по - добро възпроизвеждане на цветовете от TN но не толкова колкото IPS
    много добра видимост от различни ъгли но не токлова, колкото IPS
    по висок контраст от TN или S-IPS, което означава много добър черен цвят
    мъртвите пиксели са черни
    по - слабо време за реакция на пикселите от TN и IPS
    детайлите могат да не се видят когато директно се гледат тъмните участъци

    Спрени от производство /Fujitsu/ през 2002 година.

    _________________________________________________
    Premium-MVA (P-MVA) - аналог на S-PVA на Samsung
    същата като MVA, но с малко различия
    "overdrive" технологията увеличава времета за реакция, но все още е по-бавно от TN
    имат незначително намалено възпроизвеждане на цветовете през "overdrive" процеса

    Най-добър тест разбира се е огледа на включен дисплей – ако картината не се инвертира при поглед отдолу и страничните ъгли на видимост се доближават до 180 градуса, то пред вас е модел с P-MVA матрица

    _________________________________________________
    PVA (Patterned VA)
    същите като MVA с изключение на
    по - голями ъгли на виждане
    по - високи нива на контраста, по - тъмно черно

    _________________________________________________
    Super-PVA (S-PVA)
    същите като PVA, но с малки различия
    “Magic Speed” технология (Самсунг технология, подобна на "Overdrive"), подобряваща времето за реакция на пикселите
    слабо подобрена цветна възпроизводителност
    слабо подобрени ъгли на видимост

    cPVA е под-категория на S-PVA

    ---

    Разликата между отделните типове матрици:
    http://docs.google.com/Edit?id=dhbgpzcg_358csqrmbd5

    http://www.computers.bg/vidovete_lcd_matrici.html
    http://www.natureasia.com/asia-mater...iew.php?id=577


    LCD Type matrix
    ······················
    IPS - Pro
    ····························
    S-PVA
    ····························
    TN+Film
    ····························
    UV2A
    ····························
    A-MVA
    ····························
    Цвят 1,07 млрд.
    (30 битова дълбочина на цвета)
    16,2 млн.
    262 144
    16,2 млн. 16,2 млн.
    Възможна ориентация на субпиксeлите в пространството 1024
    256
    256

    256
    Зрителен ъгъл 160-160
    150-120
    120-120
    130-130
    Дълбочина на цвета True color (30bit)
    Normal color (24bit)
    Normal color (18bit)

    Време за реакция 25 ms
    20 ms
    10 ms
    18 ms. 20 ms.




    Оценки по 6-то балната система

    LCD Matrices
    Matrix
    ···············
    Brithness
    ··············
    Black Level
    ················
    Responce Time
    ··············
    Color Depth
    ·················
    Gama (typ.)
    ·················
    Color Saturation
    ···············
    Overview of (H)
    ·············
    Overview of (V)
    ··············
    Input Lag
    ··············
    ···············
    TN 3 4 6 3 3 3 5 3 6
    B-TN 3 5 4 3 4 3 5 4 6
    ASV 5 4 5 5 5 5 5 5 5
    P-MVA 5 5 4 5 4 4 4 4 4
    S-MVA 5 5 5 5 4 5 4 5 5
    A-MVA 5 5 5 5 4 5 4 5 5
    S-PVA 5 6 4 5 4 5 4 5 4
    UV2A 6 6 5 5 5 5 4 5 5
    E-IPS 5 4 5 5 5 5 5 5 4
    S-IPS 5 4 5 6 5 6 6 6 5
    AS-IPS 6 5 4 6 5 6 6 5 4
    IPS-A 5 5 4 6 5 6 6 5 4
    IPS-Pro 6 5 4 5 5 6 6 5 4
    A-TW-IPS 6 6 4 5 5 6 6 6 4
    SA-SFT 5 6 5 5 5 6 6 6 5
    Този пост е редактиран от hristoslav2; 04-05-14 в 14:26.

  10. Senior Member Аватара на hristoslav2
    Тук е от
    Jun 2008
    Живее в
    Варна
    Мнения
    29,874
    #23

    Отговор: LCD матрици /FAQ - мнения , обсъждане

    За маниаците на тема използвани типове LCD матрици...
    Monitor Specifications
    Liquid Crystal Materials
    PDD Technical Information & Application Notes
    Fast Response Time : Super Fine TFT Technology : Technology : About NEC LCD Monitor, Mobile and Industrial use.

    Как да различите IPS от SPVA




    http://www.tftcentral.co.uk/articles...cklighting.htm


    Видеопанели
    http://www.panelook.com/

    Видеопанелът се състои от няколко компонента:

    - LCD матрица
    - метален корпус
    - подсветка
    - отражатели
    - дифузъори (разсейватели)
    - контролер (T-con)
    Захранващият блок е отделно.


    Битност на панелите


    • 8 bpp, 28 = 256 colors
    • 16 bpp, 216 = 65,536 colors ("Highcolor" )
    • 24 bpp, 224 = 16,777,216 colors ("Truecolor")


    6-bit color
    2^6 x 2^6 x 2^6 = 64 x 64 x 64 = 262,144

    8-bit color
    2^8 x 2^8 x 2^8 = 256 x 256 x 256 = 16,777,216

    Стандартните 8-битови панели, използвани обикновено за LCD телевизори, са способни да представят 256 степени на градация между цветовете...което е твърде малко за изобразяване на заобикалящата ви реалност, където цветовете са 48 битови.
    8bit цвят - 2 на 8-ма степен или 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 което ни дава 256 оттенъка.
    10bit цвят - 2 на 10-та степен или 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 което ни дава 1024 оттенъка.
    12bit цвят - 2 на 12-та степен или 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 което ни дава 4096 оттенъка.
    16bit цвят - 2 на 16-та степен или 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 което ни дава 65,536 оттенъка.
    Color depth - Wikipedia, the free encyclopedia
    1.Display Color : 16.7 Mилиона (8-bit)
    8-bit color - Wikipedia, the free encyclopedia
    2.Display Color : 1.06 Милиарда (8-bit + Dithering)
    3.Display Colors : 1.07 Милиарда (10-bit)
    http://origin.arstechnica.com/news.m..._example01.png


    В така наречените 10bit-ови панели се използва дизеринг (8-bit + Dithering) .
    10 "битовият" панел, предлага градация с 1024 оттенъка, като така нареченият 10 битов цвят се постига с рендиране на цветовете-чрез технологията Dithering.
    http://en.wikipedia.org/wiki/Dither
    Тоест ако имаме подред 3 пиксела и левият възпроизвежда син цвят,централният лилав, а десният червен - то централният пиксел възпроизвежда в един момент син ,а в следващият червeн цвят/редува ги/ -така лъже окото ,че свети в лилаво.


    Дизеринг не става покадрово, а като съседните пиксели мигат - в двата най-близки нюанса. При заливане на екрана с едноцветна заливка, която дисплея не може да изобрази(като цвят), за да се създаде видимост на целевият цвят,
    - при линия с дебелина 1 пиксел цветовете на съседните пиксели се променят през един,
    - при голяма площ, варират цветовете на определени точки (шахматно). Тоест не цялата заливка променя цвета си на най-близките възпроизводими, а в шахматен ред - първо едните в близкият отенък надолу, после другите в близкият отенък нагоре - после обратното.
    Тоест цвета на всеки пиксел се променя покадрово в разнобой със съседните му - при дизеринга яркоста на пиксела се променя в минимални размери.


    Всички LCD видеопанели са 8 битови. Всичко останало /10-12-14bit/ е постигнато софтуерно ,както при почти всички телевизори в момента. Стандартните 8-битови панели, използвани обикновено за LCD телевизори, са способни да представят 256 степени на градация между цветовете. 10-битовият панел, предлага градация с 1024 оттенъка.


    Стандартните 8-битови панели, използвани обикновено за LCD телевизори, са способни да представят 256 степени на градация между цветовете.
    10 "битовият" панел, предлага градация с 1024 оттенъка. Реално 10 битовият цвят се постига с рендиране на цветовете-чрез технологията Dithering.
    http://en.wikipedia.org/wiki/Dither http://webstyleguide.com/wsg2/graphics/dither.html
    Тоест ако имаме подред 3 пиксела и левият възпроизвежда син цвят,централният лилав, а десният червен - то централният пиксел възпроизвежда в един момент син ,а в следващият червeн цвят/редува ги/ -така лъже окото ,че свети в лилаво.

    http://upload.wikimedia.org/wikipedi..._example01.png
    При 10 битовите нюансите на цветовете се получават чрез т.нар. dithering http://en.wikipedia.org/wiki/Ditherhttp://webstyleguide.com/wsg2/graphics/dither.html
    Въпреки това някои плавни преливки са проблем. Особено ако се гледа от много близко.


    LG IPS vs VA panel - YouTube

    Структура пикселей различных типов ЖК-панелей
    Оглавление - Дудкин А.К. Периферийные устройства ПК - Технологии современных ЖК-дисплеев.doc

    http://lcdtech.info/en/tests/lcd.pixels.structure.htm
    http://www.tftcentral.co.uk/articles...es_content.htm
    http://www.tftcentral.co.uk/articles...cklighting.htm

    Таблицата е в процес на попълване...

    LCD Type matrix
    specification
    Name
    ·················
    Nickname
    ·············
    Year
    ········
    Inventor
    ····················
    Advantage
    ·················
    Transmittance/
    contrast ratio
    ·······················
    Viewing angle (V/H)
    ······················
    Color Depth
    ················
    Remarks
    ····························
    Gamma (typ.)
    ··························
    Responce Time
    ························
    TN Twisted Nematic 1971 Schadt & Helfrich 6-bit
    STN Super Twisted Nematic 1993 Brown Boveri Research Center 6-bit
    BTN Best Twisted Nematic 1995 Samsung 6-bit
    IPS family
    IPS Super TFT 1996 Hitachi Ltd Wide viewing angle 100/100
    Base level
    Most panels also support true 8-bit per channel color. These improvements came at the cost of a lower response time, initially about 50 ms. IPS panels were also extremely expensive.
    S-IPS Super - In Plane Switching 1998 Hitachi Ltd Color shift free 100/137 IPS has since been superseded by S-IPS (Super-IPS, Hitachi Ltd. in 1998), which has all the benefits of IPS technology with the addition of improved pixel refresh timing.
    AS-IPS Advanced Super-IPS 2002 Hitachi Ltd High transmittance 130/250 AS-IPS, also developed by Hitachi Ltd. in 2002, improves substantially on the contrast ratio of traditional S-IPS panels to the point where they are second only to some S-PVAs.
    AFSS Advanced fringe field switching 2003 Boe-Hydis
    (Hyundai)
    Superior performance and colour gamut with high luminosity Colour shift and deviation caused by light leakage is corrected by optimizing the white gamut, which also enhances white/grey reproduction. For small and medium size special projects.
    IPS-Pro IPS-Provectus 2004 Hitachi Ltd High contrast ratio 137/313 The latest panel from IPS Alpha Technology with a wider color gamut and contrast ratio matching PVA and ASV displays without off-angle glowing.
    H-IPS Horizontal IPS 2007 LG. Display Improves contrast ratio by twisting electrode plane layout. Also introduces an optional Advanced True White polarizing film from NEC, to make white look more natural. This is used in professional/photography LCDs.
    IPS-Pro 2 IPS alpha 2008 Hitachi Ltd High contrast ratio Next generation of IPS-Pro
    A-TW-IPS A True White IPS 2008 NEC ??
    E-IPS Enhanced IPS 2009 LG. Display 8-bit
    PLS 2009 Samsung 8-bit
    P-IPS Professional IPS 2010 LG. Display Offer 1.07 billion colours (30-bit colour depth). More possible orientations per sub-pixel (1024 as opposed to 256) and produces a better true colour depth.
    IPS-Pro 3 IPS alpha next gen 2010 Hitachi Ltd High contrast ratio 8-bit
    S-PLS Super Plane Line Switching 2010 Samsung Similarities to IPS panels and touts improved viewing angles and image quality, increased brightness and lower production costs. PLS technology first debuted in the PC display market with the release of the Samsung S27A850 and S24A850 monitors in September 2011.
    AH-IPS Advanced High Performance IPS 2011 LG. Display Improved colour accuracy, increased resolution and PPI, and greater light transmission for lower power consumption.
    AH-PLS Advanced High Performance IPS 2011 8-bit
    VA family
    PVA Patterned Vertical Aligment 1996
    Samsung 8-bit
    S-PVA Super Pattern Vertical Alignment 1997 Samsung 8-bit
    S-PVA2 Super Patterned Vertical Alignment 2 2006 Samsung 8-bit
    C-PVA Circular Patterned Vertical Alignment 2008 Samsung 8-bit
    S-PVA3 Super Patterned Vertical Alignment 3 2009 Samsung 8-bit
    MVA Multi-domain vertical alignment 1998 Fujitsu The pixel response times of MVAs rise dramatically with small changes in brightness. Less expensive MVA panels can use dithering and FRC. 25ms
    P-MVA Premium Multi-domain vertical alignment 2000 AU Optronics 8-bit 25ms
    S-MVA
    (Super MVA)
    Super Multi-domain vertical alignment 2000 CMI & Fujitsu 8-bit 25ms
    A-MVA
    (Advanced MVA)
    Advanced Multi-domain vertical alignment 2005 AU Optronics 3000:1 8-bit 25ms
    A-MVA2 Advanced Multi-domain vertical alignment 2 2007 AU Optronics 3000:1 8-bit 25ms
    A-MVA3
    (PSA)
    Advanced Multi-domain vertical alignment 3
    2008 AU Optronics 3000:1 8-bit 25ms


    8-bit
    ASV Axially Symmetric Vertical Alignment

    Advanced Super View
    2002 Sharp It is a VA mode where liquid crystal molecules orient perpendicular to the substrates in the off state. The bottom sub-pixel has continuously covered electrodes, while the upper one has a smaller area electrode in the center of the subpixel. When the field is on, the liquid crystal molecules start to tilt towards the center of the sub-pixels because of the electric field; as a result, a continuous pinwheel alignment (CPA) is formed; the azimuthal angle rotates 360 degrees continuously resulting in an excellent viewing angle. The ASV mode is also called CPA mode.
    UV²A

    (Optical aligment)
    Ulthra Violet vertical Aligment 2009 Sharp
    8-bit
    Този пост е редактиран от hristoslav2; 04-05-14 в 14:04.

  11. Senior Member Аватара на hristoslav2
    Тук е от
    Jun 2008
    Живее в
    Варна
    Мнения
    29,874
    #24

    Отговор: LCD матрици /FAQ - мнения , обсъждане

    http://en.tab-tv.com/?p=11685
    Panel Technologies - TN Film, VA, IPS - TFTCentral
    https://tscomputersblog.wordpress.co...ri-monitorite/
    https://en.wikipedia.org/wiki/IPS_panel


    LCD Type matrix
    specification
    Name
    ·················
    Nickname
    ·············
    Year
    ········
    Inventor
    ····················
    Advantage
    ······················································································ ········
    Disadvantages
    ········································································
    Transmittance/
    contrast ratio
    ·······················
    Viewing angle
    (V/H)

    ·····················
    Color Depth
    ················
    Remarks
    ····························
    Gamma (typ.)
    ························
    Responce Time
    ························
    TN Twisted Nematic 1971 Schadt & Helfrich 1. Inexpensive cost and price: One of the key advantages of TN LCD panels stems from the easy implementation of twisted nematic technology. This translates to cheaper manufacturing requirements and simpler production processes, thus further translating into affordability of TN LCD panels and the corresponding consumer electronics products to end consumers.


    Note that the introduction and subsequent popularity of twisted nematic technology quickly pushed out other display technologies such as monolithic LED and CRT for most electronics.


    Furthermore, because TN LCD panels are easy and cheap to manufacture, not only did they replace LED and CRT display but they have also continued to remain an affordable alternative to modern display technologies such as IPS and AMOLED.


    2. Low power consumption: Twisted nematic technology does not require a current to flow to operate. It also runs under low operating voltages. These advantages collectively correspond to low and efficient power consumption, thus making TN LCD panels suitable for use with batteries and low-powered devices.


    The power consumption advantage of TN LCD panels has ushered in the era for low-powered and lightweight LCD, thus paving the way for the invention and production of compact and lighter consumer electronics and non-consumer electronic instruments.


    3. Better response time and refresh rate: Pixel response time is the duration it takes a single pixel to transition from one state to another. Measured in milliseconds, the lower the number, the better.


    On the other hand, refresh rate is the frequency in which the image in a display is refreshed. Measured in hertz, the higher the number, the better.


    High response time and low refresh rates create ghosting effects and motion blurs around an image. This is especially true for fast moving images.


    Compared against IPS LCD panels, TN LCD panels have shorter response time and higher refresh rate. Pixels in a typical TN LCD panel change their state as fast as two milliseconds compared against the five milliseconds response time of a typical IPS LCD panel. Furthermore, high-end TN LCD panels even have double the usual refresh rate of 120Hz instead of 60Hz.


    The better pixel response time and refresh rate advantages of TN LCD panels can enable them to display twice as much information every second. These make TN LCD panels suitable for use in high-end gaming. In fact, some hardcore gamers prefer a TN computer monitor to a VA or IPS monitor due to its responsiveness and better refresh rate.
    1. Poor viewing angle: A notable disadvantage of TN LCD panels is a narrow viewing angle. A user needs to look at a TN panel from a straight up 90-degree angle to maximize its visual performance.


    When viewed from other angles, colors will appear duller and images will appear darker on a TN panel. User familiar with different types of LCD can easily discern if a panel is a TN panel through these color shifts and image distortion.


    Nonetheless, the restricted viewing angle compels a user to remain sitting dead straight up in front of a TN LCD panel. Doing so can be problematic in larger TN LCD panels in which changing viewing angle is sometimes unavoidable.


    2. Poor color reproduction: Among the different types of LCD to include VA panels and IPS panels, TN panels suffer from poor color reproduction.


    Apart from the inherent dull color reproduction in twisted nematic LCD technology, especially when compared against vertical alignment or in-plane switching LCD technologies, the problem with the limited viewing angle also produces poor representation of colors.


    Poor color reproduction also means that color inaccuracy is another disadvantage of TN panels. This is the reason why TN panels are not suitable for use in color critical tasks such as graphic design, photo manipulation, and video editing, among others.


    3. Quality variability: Note that the quality of TN LCD panels depends on manufacturers. Low-end TN LCD panels have the tendency to exhibit extreme instances of other disadvantages such as poor viewing angle and poor color reproduction.


    Take note of cheap feature mobile phones as an example. The TN LCD panels used in these products can exhibit extreme color shifts even at slight change in viewing angle.


    Images in low-end TN LCD panels can also be indiscernible when viewed under direct sunlight. Note than another disadvantage of TN LCD panels is susceptibility to dead pixels. This becomes more pronounced in cheaper and low-end panels.
    6-bit
    STN Super Twisted Nematic 1983 Brown Boveri Research Center monochrome
    CSTN Color Super Twisted Nematic 19950 Sharp Display 6-bit
    BTN Best Twisted Nematic 1995 Samsung Display 6-bit
    IPS family
    IPS Super TFT 1996 Hitachi Ltd 1. Better color reproduction: One of the notable advantages of IPS LCD panels over TN panels is color reproduction that further translates into color accuracy and better image quality.


    Note that a typical TN panel only has a 6-bit RGB color depth. This means that it is only capable of producing 262,144 possible colors. On the other hand, a conventional IPS has an 8-bit RGB color depth capable of producing 16.7 million possible colors.


    Though another type of LCD technology called virtual alignment or VA has a similar 8-bit RGB color depth, several manufacturers have introduce high-end IPS panels with 16-bit to 24-bit RGB color depth.


    Active-matrix organic light-emitting diode or AMOLED display technology is a close competitor of IPS display technology. Between the two however, IPS has better color accuracy because AMOLED panels are prone to producing images with strong or highly saturated colors.


    When compared against TN panels and VA panels, as well as AMOLED panels thereby, IPS LCD panels produce more vibrant images and more realistic colors. This advantage means that in-plane switching is an ideal display option for use in multimedia consumption, as well as in color critical work such as photo editing, graphic design, and video editing.


    2. Wide viewing angle: TN panels also suffer from very limited viewing angle as demonstrated by poor off-axis image quality. The introduction of VA LCD technology tried to resolve this limitation. But VA panels suffer from color shifts when viewed from a slightly different angle.


    Nonetheless, wide viewing angle is another advantage of in-plane switching over TN and VA display technologies. Typical IPS LCD panels will produce no image distortion and relatively minimal color shifts when viewed from different angles while high-end IPS panels will display consistent contrast and brightness levels under different viewing angles.


    This advantage of IPS panels is made possible because the technology involves the capacity to change the physical behavior of the liquid crystal layer by making the crystal molecules respond to the electric field in parallel to the TFT. This also results in better color reproduction.


    For smartphone and tablet applications, the aforementioned advantage means that these portable devices can be held in various angles and eye levels. This advantage also means that television sets or computer monitors with IPS panels offer a better visual experience than other LCD panels.


    3. Better sunlight visibility: Colors and images on an IPS panel remain considerably more visible under bright outdoor lights or direct sunlight than other display technologies. This is an advantage of in-plane switching technology over TN and AMOLED display technologies.


    The better color reproduction coupled with better viewing angle and backlighting make IPS usable or viewable under direct sunlight. Note that TN panels suffer from poor visibility under direct sunlight because of its limited color depth. AMOLED panels, on the other hand, have similar problems because of the inapplicability of backlighting.


    4. Longer lifespan: Dead pixels are an inherent issue affecting different LCD technologies. The lifespan of IPS LCD panels cannot be generally compared against the lifespan of TN panels or VA panels.


    However, it is important to note that TN display technology is easier to implement and thus, TN panels are easier to produce. This further translates to more manufacturers producing TN panels, this increasing the tendency for low manufacturing standards. Some manufacturers are also producing low-end TN panels to meet demands for cheaper LCD.


    When generally compared against typical TN panels nonetheless, IPS panels might have a longer lifespan. On the other hand, the lifespan of VA panels might be comparable with IPS. Remember that this is an overstatement.


    Compared against AMOLED panels however, IPS panels have obvious longer lifespan. Remember that one of the notable limitations of AMOLED is its susceptibility to noticeable pixel degradation and faster screen burn-ins.
    1. Contrast ratio: When compared against TN panels, IPS LCD panels have better contrast ration because it has better color depth. However, VA panels and AMOLED panels have better contrast ratio than IPS panels.


    Backlighting can be blocked effectively in a vertical alignment display technology. This produces deeper blacks and subsequently, higher contrast ratio compared to in-plane switching display technology.


    On the other hand, AMOLED panels naturally produce deep blacks because they represent the absence of light and thus, the absence of color. This results in higher contrast ratio. Although IPS technology produces intense whites, high-end AMOLED panels can also rival typical IPS panels in this regard.


    2. Power consumption: Another disadvantage of IPS panels when compared against TN panels and AMOLED panels is power consumption. In-plane switching technology consumers more power than TN or AMOLED display technologies.


    Note that TN panels are suitable for battery-operated and low-powered devices. On the other hand, a typical IPS panel requires 15 percent more power than a TN panel. IPS panels also require a strong backlighting to improve display clarity unlike AMOLED panels.


    This drawback means that consumer electronic devices featuring an IPS panel have more power requirements than counterpart devices equipped with TN or AMOLED panels. This affects the overall energy efficiency rating and battery life performance of a specific device.


    3. Pixel response time: Other disadvantages of in-plane switching technology are slow pixel response time and low refresh rate. The response time and refresh rate of IPS panels are slower and lower than TN or AMOLED panels.


    Pixel response time is the duration it takes a single pixel to transition from one state to another. Refresh rate is the frequency in which the image in a display is refreshed. Slow pixel response time and low refresh rate create ghosting effects and motion blurs around a moving image. In addition, both ghosting effects and motion blurs are more straining to the eyes.


    This limitation makes an IPS panel an unsuitable display option for use in fast-paced and competitive gaming. TN display technology has the faster response time and higher refresh rates among existing LCD technologies. This is the reason why some hardcore gamers still prefer TN panels to IPS or VA panels despite having poor color reproduction.


    Manufacturers have produced IPS panels with better response times and refresh rates. However, these panels are more expansive than TN panels, thus making them unappealing to budget-conscious consumers.


    4. Cost and price: Manufacturing IPS LCD panels is costlier than manufacturing TN panels because of the involved engineering complexity. This higher manufacturing costs results in higher prices for end consumers.


    Entry-level laptops such as netbooks, as well as feature phones and budget smartphones are commonly equipped with TN panels. Devices with IPS LCD panels are relatively more expensive. Note that high-grade IPS panels are featured in top-of-the-line products with higher price tags.


    Between in-plane switching and AMOLED display technologies however, both are also costly to manufacture and both IPS and AMOLED panels are commonly featured in premium products such as high-end smartphones and tablet computers.
    100/100
    Base level
    Most panels also support true 8-bit per channel color. These improvements came at the cost of a lower response time, initially about 50 ms. IPS panels were also extremely expensive.
    S-IPS Super - In Plane Switching 1998 Hitachi Ltd Color shift free 100/137 8-bit + FRC IPS has since been superseded by S-IPS (Super-IPS, Hitachi Ltd. in 1998), which has all the benefits of IPS technology with the addition of improved pixel refresh timing.
    AS-IPS Advanced Super-IPS 2002 Hitachi Ltd High transmittance 130/250 8-bit AS-IPS, also developed by Hitachi Ltd. in 2002, improves substantially on the contrast ratio of traditional S-IPS panels to the point where they are second only to some S-PVAs.
    AFSS Advanced fringe field switching 2003 Boe-Hydis
    (Hyundai)
    Superior performance and colour gamut with high luminosity Colour shift and deviation caused by light leakage is corrected by optimizing the white gamut, which also enhances white/grey reproduction. For small and medium size special projects.
    IPS-Pro IPS-Provectus 2004 Hitachi Ltd High contrast ratio 137/313 8-bit The latest panel from IPS Alpha Technology with a wider color gamut and contrast ratio matching PVA and ASV displays without off-angle glowing.
    H-IPS Horizontal IPS 2007 LG. Display 8-bit Improves contrast ratio by twisting electrode plane layout. Also introduces an optional Advanced True White polarizing film from NEC, to make white look more natural. This is used in professional/photography LCDs.
    IPS-Pro 2 IPS alpha 2008 Hitachi Ltd High contrast ratio 8-bit Next generation of IPS-Pro
    A-TW-IPS A True White IPS 2008 NEC ?? 8-bit
    E-IPS Enhanced IPS 2009 LG. Display 8-bit
    PLS switching 2009 Samsung 8-bit
    P-IPS Professional IPS 2010 LG. Display Offer 1.07 billion colours (30-bit colour depth). More possible orientations per sub-pixel (1024 as opposed to 256) and produces a better true colour depth.
    IPS-Pro 3 IPS alpha next gen 2010 Hitachi Ltd High contrast ratio 8-bit
    S-PLS Super Plane Line Switching 2010 Samsung Similarities to IPS panels and touts improved viewing angles and image quality, increased brightness and lower production costs.
    AH-IPS Advanced High Performance IPS 2011 LG. Display 8-bit + FRC Improved colour accuracy, increased resolution and PPI, and greater light transmission for lower power consumption.
    AH-PLS Advanced High Performance IPS 2011 8-bit
    AH-IPS Advanced High Performance IPS 2011 LG. Display 8-bit + FRC Improved colour accuracy, increased resolution and PPI, and greater light transmission for lower power consumption.
    AH-PLS Advanced High Performance IPS 2011 8-bit
    VA family
    PVA Patterned Vertical Aligment 1996 Samsung 8-bit
    S-PVA Super Pattern Vertical Alignment 1997 Samsung 8-bit
    S-PVA2 Super Patterned Vertical Alignment 2 2006 Samsung 8-bit
    C-PVA Circular Patterned Vertical Alignment 2008 Samsung
    S-PVA3 Super Patterned Vertical Alignment 3 2009 Samsung 8-bit + FRC
    MVA Multi-domain vertical alignment 1998 Fujitsu The pixel response times of MVAs rise dramatically with small changes in brightness. Less expensive MVA panels can use dithering and FRC. 25ms
    P-MVA Premium Multi-domain vertical alignment 2000 AU Optronics 8-bit + FRC 25ms
    S-MVA
    (Super MVA)
    Super Multi-domain vertical alignment 2000 CMI & Fujitsu 8-bit + FRC 25ms
    A-MVA
    (Advanced MVA)
    Advanced Multi-domain vertical alignment 2005 AU Optronics 1300:1 8-bit 25ms
    A-MVA2 Advanced Multi-domain vertical alignment 2 2007 AU Optronics 2000/3000:1 8-bit 25ms
    A-MVA3
    (PSA)
    Advanced Multi-domain vertical alignment 3
    2008 AU Optronics 3000/5000:1 8-bit + FRC 25ms
    ASV Axially Symmetric Vertical Alignment
    Advanced Super View
    2002 Sharp 8-bit + FRC It is a VA mode where liquid crystal molecules orient perpendicular to the substrates in the off state. The bottom sub-pixel has continuously covered electrodes, while the upper one has a smaller area electrode in the center of the subpixel. When the field is on, the liquid crystal molecules start to tilt towards the center of the sub-pixels because of the electric field; as a result, a continuous pinwheel alignment (CPA) is formed; the azimuthal angle rotates 360 degrees continuously resulting in an excellent viewing angle. The ASV mode is also called CPA mode.
    UV²A
    (Optical aligment)
    Ulthra Violet vertical Aligment 2009 Sharp Display 8-bit + FRC






    LCD Type matrix
    Name
    ········
    Nickname
    ·····················
    Summary
    ·······································
    Positives
    ·······································
    Negatives
    ·······································
    Typical Spec
    Features
    ·······································
    TN Twisted Nematic Produced by most manufacturers
    Dominate smaller screen market almost exclusively (15 - 19")
    Also available in larger sizes up to 27" max
    Low cost to produce, low retail costs for screens
    Responsive especially since introduction of overdrive - key choice for gamer screens
    Can natively support 120Hz+ refresh rates
    120Hz+ screens often feature LightBoost backlight systems for improved motion blur
    Most restrictive viewing angles, especially in vertical plane
    Not great for colour critical work due to viewing angles primarily
    Movie noise problematic, especially where overdrive used
    1 - 2ms G2G response time
    1000:1 contrast ratio (realistic)
    170/160 viewing angles (unrealistic in vertical field)
    16.7m colour depth through 6-bit+FRC panels
    Fairly light AG coating used
    120Hz+ refresh rate support from some
    VA Vertical Aligment


    AMVA, SMVA, UV2A
    Early MVA panels designed to improve on TN Film. Offered improved viewing angles but very slow response times
    Later P-MVA and S-MVA panels offered improved response times. Also improved contrast ratios to 1000 - 1200:1 typically
    Modern AMVA panels from AU Optronics. Improved response times further and contrast ratios now 3000 - 5000:1
    Contrast ratios very high with >3000:1 common in practice
    Response times adequate for most users and vastly improved over older generations of MVA
    8-bit colour depth
    Some now support 120Hz refresh rate
    Response time still normally slow compared with TN Film and IPS offerings.
    Off-centre contrast shift inherent to all MVA panel generations. Not ideal for colour critical work
    Viewing angles not as wide as IPS/PLS. Some improvements in very recent generations
    No current 10-bit panels
    5 - 6ms G2G response time (in practice mostly much slower)
    5000:1 contrast ratio (figures over 3000:1 common and realistic)
    178/178 viewing angles (somewhat unrealistic considering contrast shifts and off-centre contrast issue)
    60Hz refresh rate generally
    Some 120Hz support emerging
    16.7m colour depth through 8-bit panels
    Light / semi-glossy AG coating used
    PVA Patterned Vertical Alignment Early PVA panels designed as alternative to MVA, very similar performance overall
    Later S-PVA and cPVA panels offered improved response times. Also improved contrast ratios to 1000 - 1200:1 typically
    PVA now rarely used or produced in desktop monitor market. Samsung seemingly concentrating on PLS instead.
    Contrast ratios pretty high with 1200:1 common in practice
    Response times adequate for some users where overdrive is used (S-PVA, cPVA generations mostly)
    Response time still slow compared with TN Film and IPS offerings.
    No support for native 120Hz+ refresh rates
    Off-centre contrast shift inherent to all PVA panel generations. Not ideal for colour critical work
    Viewing angles not as wide as IPS/PLS. Some improvements in very recent generations
    No 10-bit panels available
    8ms G2G response time (in practice mostly much slower)
    1000:1 contrast ratio (realistic)
    178/178 viewing angles (somewhat unrealistic considering contrast shifts and off-centre contrast issue)
    16.7m colour depth through 8-bit panels mostly, some 6-bit+FRC used
    Light / semi-glossy AG coating used
    IPS In Plane Switching Early IPS panels designed for colour enthusiasts
    S-IPS improved response times somewhat. Contrast ratio still an issue
    H-IPS changed pixel structure, improved response times with overdrive, contrast ratio improved
    e-IPS and other variants of H-IPS helped drive down production costs and make IPS more mainstream
    p-IPS developed to offer 10-bit colour depth support
    AH-IPS is current generation being produced
    Alternative IPS-like technologies introduced by Samsung (PLS) and AU Optronics (AHVA) to compete
    Viewing angles are widest of the technologies. Reduced contrast and colour shift. Freedom from off-centre contrast shift seen from VA matrices
    Response times of modern generations now very good, better than VA
    10-bit panels available
    No support for native 120Hz+ refresh rates
    Older variants criticised for grainy AG coating
    Distracting white glow from an angle when viewing dark content (IPS glow)
    5ms G2G response time (in practice a little slower)
    1000:1 contrast ratio (typically achieving 800 - 1000:1 now)
    178/178 viewing angles (mostly realistic)
    16.7m colour depth common through 8-bit panels mostly, some 6-bit+FRC used
    1.07b colour support available from 8-bit+FRC and 10-bit panels
    Many older panels have grainy AG coating
    Lighter AG coating used on most modern AH-IPS panels
    LCD matrix

Сподели във Facebook Сподели в Google Plus Сподели в Twitter Изпрати на Email Сподели в LinkedIn
Страница 2 от 2 ПърваПърва 12

Подобни теми

  1. Хлебопекарна / FAQ - мнения, обсъждане
    От hristoslav2 във форум Малки домакински уреди
    Отговори: 68
    Последно: 19-02-19, 15:37
  2. Сокоизтисквачки / FAQ - мнения, обсъждане
    От kod във форум Малки домакински уреди
    Отговори: 64
    Последно: 16-02-19, 18:46
  3. Бойлери / FAQ - обсъждане, мнения
    От hristoslav2 във форум Бяла техника
    Отговори: 1101
    Последно: 05-02-19, 20:38
  4. Фритюрник / FAQ - мнения, обсъждане
    От hristoslav2 във форум Малки домакински уреди
    Отговори: 18
    Последно: 13-02-18, 23:23
  5. Тостери / FAQ - мнения, обсъждане
    От hristoslav2 във форум Малки домакински уреди
    Отговори: 0
    Последно: 22-05-12, 16:03
SetCombG.com
SetCombG.com е портален сайт и Форум за битова техника, телевизори, климатици, лаптопи и смартфони, създаден през 1999 година.
Заедно сме над 15 години!
Този форум се задвижва, благодарение на Persy Сървър
Следвай ни
Горе